banner



M 1 M 2 180

In effigy, l || m, show that ∠1 + ∠2 - ∠3 = 180°.


Given: fifty || m
To Show: ∠i + ∠2 - ∠3 = 180°
Construction: Through C, draw CF || l || thou

  Given: l || mTo Prove: ∠1 + ∠2 - ∠3 = 180°Construction: Throug

Proof: ∵ fifty || CF by structure and a transversal BC intersects them
∴ ∠i + ∠FCB = 180°
| ∵ Sum of consecutive interior angles on the same side of a transversal is 180°
⇒ ∠1 + ∠2 - ∠FCD = 180° ...(1)
But    ∠FCD = ∠3    ...(ii)
| Alternating interior angles
∴ From (i) and (2),
∠1 + ∠2 - ∠3 = 180°


In figure, lines AB and CD intersect at O. If ∠AOC + ∠BOE = 70° and ∠BOD = 40°, find ∠BOE and reflex ∠COE.


∵ Lines AB and CD intersect at O
∴ ∠AOC = ∠BOD
| Vertically Opposite Angles
Only ∠BOD = twoscore°    ...(i) | Given
∴ ∠AOC = 40°    ...(2)
Now, ∠AOC + ∠BOE = 70°
⇒ 40° + ∠BOE = 70° | Using (ii)
⇒ ∠BOE = lxx° - 40°
⇒ ∠BOE = 30°
Once more,
Reflex ∠COE
= ∠COD + ∠BOD + ∠BOE
= ∠COD + 40° + 30°
| Using (1) and (2)
= 180° + twoscore° + 30°
| ∵ Ray OA stands on line CD
|∴ ∠AOC + ∠AOD = 180° (Linear Pair Axiom) ⇒ ∠COD = 180°
= 250°.


In figure, lines XY and MN intersect at O. If ∠POY = xc° and a : b = ii : 3, find c.


because space spaceRay OP stands on  line Xy

therefore angle POX plus angle POY equals 180 degree

                             | Liner Pair Axiom

rightwards double arrow space space space space space angle POX space plus space 90 degree space equals space 180 degree  space space space space space space space space space space space space space space space space space space space space space space space space space space vertical line space because space angle POY equals 90 degree space left parenthesis Given right parenthesis  rightwards double arrow space space space space space space angle POX equals 180 degree minus 90 degree  rightwards double arrow space space space space space space space space angle POX equals 90 degree  rightwards double arrow space space space angle POM plus angle XOM equals 90 degree

rightwards double arrow            a + b = xc0 .....(1)

                 a : 2 = two : 3

rightwards double arrowstraight a over straight b equals 2 over 3

rightwards double arrowstraight a over 2 equals b over 3 equals k left parenthesis s a y right parenthesis

rightwards double arrow              a = 2k
                   b = 3k

Putting the values of a and b in (1), we get

           2k + 3k = 900
open table attributes columnalign right end attributes row cell therefore space space space space space space straight a equals 2 straight k equals 2 left parenthesis 18 degree right parenthesis equals 36 degree end cell row cell b equals 3 k equals 3 left parenthesis 18 degree right parenthesis equals 54 degree end cell end table close curly brackets space space space space space space space space space space space space space space.... left parenthesis 2 right parenthesis

∵ Ray OX stands on line MN
∴ ∠XOM + ∠XON = 180°
| Linear Pair Axiom
⇒    b + c = 180°
⇒    54° + c = 180° | Using (2)
⇒    c = 180° - 54°
⇒    c = 126°.


In effigy, ∠PQR = ∠PRQ, and so prove that ∠PQS = ∠PRT.


∵ Ray QP stands on line ST
∴ ∠PQS + ∠PQR = 180°    ...(1)
| Linear Pair Axiom
∵ Ray RP stands on line ST
∴ ∠PRQ + ∠PRT = 180°    ...(ii)
| Linear Pair Axiom
From (1) and (2), we obtain
∠PQS + ∠PQR = ∠PRQ + ∠PRT
⇒    ∠PQS = ∠PRT.
| ∵ ∠PQR = ∠PRQ (Given)


In figure, if x + y = w + z, and then show that AOB is a line.


∴ AOB is a line.

| If the sum of two side by side angles is 180°, then the non-common arms of the angles form a line.


In figure, POQ is a line. Ray OR is perpendicular to line PQ. Bone is some other ray lying betwixt rays OP and OR. Prove that
angle ROS equals 1 half left parenthesis angle QOS minus angle POS right parenthesis


∵ Ray OR is perpendicular to line PQ.
∴ ∠QOR = ∠POR = ninety°    ...(1)
∠QOS = ∠QOR + ∠ROS    ...(2)
∠POS = ∠POR - ∠ROS    ...(3)
From (2) and (3),
∴ ∠QOS - ∠POS = (∠QOR - ∠POR) + two∠ROS = two∠ROS | Using (ane)

rightwards double arrow space angle ROS equals 1 half left parenthesis angle QOS minus angle POS right parenthesis


M 1 M 2 180,

Source: https://www.zigya.com/study/book?class=9&board=cbse&subject=Mathematics&book=Mathematics&chapter=Lines+and+Angles&q_type=&q_topic=&q_category=&question_id=MAEN9056790

Posted by: scottoted1938.blogspot.com

0 Response to "M 1 M 2 180"

Post a Comment

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel